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Clustering iIn FPGAs

A Multiple basic logic elements (BLES) in one
configurable logic block (CLB)

ASt andard practice in

A Necessary for reducing power consumption
A Reduced use of global interconnect




Clustering iIn FPGAS

A Larger clustergy, appreciable overhead
A Area, delay, power, energy

A Gains from reducing global interconnect
are limited by overhead within logic blocks

Optimizing intraCLB routing can reduce CLB
overheads, reducing area and power further



This Work

A Goal-Understand the design space of intra
CLB routing implementations
A Compare different routing strategies

A Multiplexer (mux) based
A Island style bdirectional routing (MiniFPGA)

A Make informed decisions based on CLB architecture
A LUT Size (K)
A Cluster size (N)




This Work

A Conclusion- Optimal intraCLB routing
Implementation changes

A Multiplexer (mux) based nominal voltage and high
speed

A Mini-FPGA-low voltageand low power/energy




Outline

A Introduction
A CLB Topologies
A Area Comparison

A Simulation Comparison
A Delay
A Energy Consumption

A Conclusions
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CLB Topologies

A Mux-based CLB
A Signals in CLB are connected througixes
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CLB Topologies

A Mini-FPGA CLB

A Signals are routed using connection boxes and
switch boxes (similar to global interconnect)

A Transmission gate switches
A Introduced for use in lowpower FPGAS in

Ryan et. al, 2010 CICC % E %,
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Area Comparison

A Minimizing CLB area is important
A Decrease length of global interconnect wires

A Using transistor count as a representation for
area
A Layouts are not yet completed

A transistor count = minimurwidth transistor
estimates (MTES)

A CLBs compared all have minimsized widths
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Transistor Counts vs. Cluster size
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Transistor Counts vs. Cluster size

A Mini-FPGA CLBsarea increases linearly
A Mux-based CLBsarea increasequadratically

For larger clustering values (i.e. more BLES per
CLB), minrFPGA CLBs use fewer transistors,
decreasing area

Using mintFPGA allows for increased clustering
with the same overhead as Mukased CLBs with
the same N
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Transistor Counts vs. Cluster Size

A Plot does not account fanultiplexer
depopulation

A Using smallemuxesthat do not connect CLB
iInput/output to every BLE input/output
A Reduces area
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Area Comparison

A BreakEven points

A Architectures (k and N) where mipased and mini
FPGA CLBs have same area

A CLBs with larger N should be implemented as-mini
FPGASs to minimize transistor count

A CLBs with smaller N should be implemented as-mux
based FPGASs
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BreakEven points

Break-even Points

Mini-FPGA vs. Mux (Buffered) -

Break-even Points @ Different

Channel Width Depopulation %'s
0% 50% 66% 75%
2 Always Less| N=4 | N=5| N=6
4 N=3 MN=8 [N=11]| N=14
5] N=0 N=11|N=16]| N=22
) N=9 MN=15|N=23| N=29
I K=6
2 Always Less| N=2 | N=3 | N=4
4 N=2 N=4 | N=6| N=8
6 N=4 N=6 | N=9 | N=12
8 N=4 N=9 |[N=14] N=16
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BreakEven points

Mini-FPGA vs. Mux (Buffered) -
Break-even Points
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Additional Considerations

A Multiplexers are built from 2L muxeswith buffers
at each output

A More buffering than necessary for functionality

A Mini-FPGA implementation is also not idealized

A Plenty of room for optimization (connection box/switch
box depopulation, gating, etc.)

A Changes in both would have large effects on
transistor counts

A Left for future work
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Area Comparison Conclusions

A The CLB topologies increase in transistor count at
different rates

A Mux-basedA quadratically
A Mini-FPGAY linearly

A Breakeven points in area exist at clustering values (N)
where the two design choices have similar areas

A Lower NA Mux-based is better
A Higher NA Mini-FPGA is better

A Further work must be done to optimize both
Implementations for a more complete comparison
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Simulation Comparison

A Metrics
A Delay- CLB performance
A Energy- CLB efficiency

A Simulation comparisons conducted at break
even points

A Determine optimal performance/efficiency at equal
areas
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Simulation Flow Chart

Determine
set of
parameters
{k, N, etc.)

NO

Generate netlist
using SKILL

Generate inputs
for VTR Flow

Does it map
successfully?

Simulate w
UltraSim

Generate
initial
conditions for
sim using Perl
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Simulation Flow Chart
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Simulation details

A 1 BLE in each CLB configured w/ a chessboard
patter (odd Dbits 1’ s,

A Each CLB is driven kbyjnput signals that serve
as a binary counter from 0 td4

A Ensure worstase delay pattern is exercised

A Voltage is swept from 0.30.8 V

21



Energy/Op (J)

{ ED Curve

Mux-based (k4n11, Depop. = 50%, Default = 0)
Mux-based (k4n11, Depop. = 50%, Default = 1)
==f=}== Mini-FPGA (k4n11, Channel Width = 6)

10-12
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ED Curve

Mux-based (k4n11, Depop. = 50%, Default = 0)
Mux-based (k4n11, Depop. = 50%, Default = 1)

==f=}== Mini-FPGA (k4n11, Channel Width = 6)
=12
10

Energy/Op (J)

bit values matter

U Default configuration
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ED Curve

Mux-based (k4n11, Depop. = 50%, Default = 0)
Mux-based (k4n11, Depop. = 50%, Default = 1)
==f=}== Mini-FPGA (k4n11, Channel Width = 6)

10"

ol Minimum energy

.- operation happens at

~:1ir” different voltages
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0.5 V for muxbased

Energy/Op (J)

24



Energy/Op (J)

ED Curve

Mux-based (k4n11, Depop. = 50%, Default = 0)
Mux-based (k4n11, Depop. = 50%, Default = 1)

==f=}== Mini-FPGA (k4n11, Channel Width = 6)
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Depopulation

Channel Width

Energy savings

Delay savings

Simulation Results

(mux-based) | (mini-FPGA) | w/ mini-FPGA | w/ mini-FPGA
4 50% 2 20.6% 3.8% 6|2 50% 2
4 66% 2 61.6% 81.6% 6|3 66% 2 Unrouteable
4 75% 2 -10.1% 4.0% 6|4 75% 2
4 50% 4 4.4% -232.2% 6|4 50% 4 36.4% 78.7%
4 66% 4 0.8% -233.0% 6|6 66% 4 -17.5% -9.1%
4 50% 6 6.7% -228.7% 6|6 50% 6 -33.8% -9.1%
4 75% 4 6.6% -226.0% 6|8 75% 4 64.6% 76.9%
4 50% 8 3.5% -235.4% 6|9 50% 8 10.4% -6.2%
4 66% 6 16.0% -247.3% 6|9 66% 6 7.1% -7.1%
4 75% 6 5.0% 6.1% 61|12 75% 6 7.3% -6.0%
4 66% 8 5.3% 5.0% 6 |14 66% 8 24.5% -256.5%
4 75% 8 -11.4% -10.0% 6|16 75% 8 77.9% 0.2%
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Depopulation

Channel Width

Energy savings

Delay savings

Simulation Results

(mux-based) | (mini-FPGA) | w/ mini-FPGA | w/ mini-FPGA
4 50% 2 20.6% 3.8% 6|2 50% 2
4 66% 2 61.6% 81.6% 6|3 66% 2 Unrouteable
4 75% 2 -10.1% 4.0% 6|4 75% 2
4 50% 4 4.4% -232.2% 6|4 50% 4 36.4% 78.7%
4 66% 4 0.8% -233.0% 6|6 66% 4 -17.5% -9.1%
4 50% 6 6.7% -228.7% 6|6 50% 6 -33.8% -9.1%
4 75% 4 6.6% -226.0% 6|8 75% 4 64.6% 76.9%
4 50% 8 5.5% -235.4% 6|9 50% 8 10.4% -6.2%
4 66% 6 16.0% -247.3% 6|9 66% 6 7.1% -7.1%
4 75% 6 5.0% 6.1% 6112 75% 6 7.3% -6.0%
4 66% 8 5.3% 5.0% 6|14 66% 8 24.5% -256.5%
4 75% 8 -11.4% | -10.0% 6|16| 75% 8 C77.9%> |  0.2%

—

Maximum Energy Savings
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Depopulation

Channel Width

Energy savings

Delay savings

Simulation Results

Maximum Delay Savings

(mux-based) | (mini-FPGA) | w/ mini-FPGA | w/ mini-FPGA
4 50% 2 20.6% 3.8% 6|2 50% 2
4 66% 2 61.6% 81.6% 6|3 66% 2 Unrouteable
4 75% 2 -10.1% 4.0% 6|4 75% 2
4 50% 4 4.4% -232.2% 6|4 50% 4 36.4% 78.7%
4 66% 4 0.8% -233.0% 6|6 66% 4 -17.5% -9.1%
4 50% 6 6.7% -228.7% 6|6 50% 6 -33.8% -9.1%
4 75% 4 6.6% -226.0% 6|8 75% 4 64.6% 76.9%
4 50% 8 5.5% -235.4% 6|9 50% 8 10.4% -6.2%
4 66% 6 16.0% -247.3% 6|9 66% 6 7.1% -7.1%
4 75% 6 5.0% 6.1% 612 75% 6 7.3% -6.0%
4 66% 8 5.3% 5.0% 6 14| 66% 8 24.5% |(-256.5%
4 75% 8 -11.4% -10.0% 6|16 75% 8 77.9% 0.2%
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2hd Simulation

A Compare fully utilized CLBs to each other

A Configuredall BLEs in each CLB to chessboard
patterns

A All other aspects of the simulation are the same
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ED Curve

Mux-based (k4n16, Depop. = 66%, Default = 0)
Mini-FPGA (k4n16, Channel Width = 6)
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{ ED Curve

Mux-based (k4n16, Depop. = 66%, Default = 0)
Mini-FPGA (k4n16, Channel Width = 6)
1

10 —————— T
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{ ED Curve

Mux-based (k4n16, Depop. = 66%, Default = 0)
Mini-FPGA (k4n16, Channel Width = 6)
1

10 —————— T

2| Mux-based CLBs

| consume less energy
over a larger range of
voltages
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Simulation Conclusions

A Single BLE mappings
A Mini-FPGA CLBs reduce energy consumption
A Up to ~78%
A Mux-based CLBs minimize delay

A As much as ~256% decrease
A Minimum energy point is at a higher VDD in some cases

A Fully utilized CLBs

A Small difference in energy consumption between CLBs
A No more than 15%

A Mini-FPGA CLBs consume the lowest energy

A Mux-based CLBs consume less energy across multiple
voltages
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Conclusions

A Mux-based CLBs

A Area increasequadraticallyw/ CLB cluster size
A More area efficient than miAlFPGA CLBs with small N

A Consumes less energy than raifRGA CLBs over a
larger range of voltages

A Higher performance
A As much as ~260% lower delay

34



Conclusions

A Mini-FPGA CLBs

A Area increases linearly with increasing clustering (N)
A More area efficient at large N

A Opportunity for increased clustering with minimal
overhead

A Minimizes energy consumption
A By as much as ~78%

A Fully utilized CLBs show minimal difference in
performance/efficiency
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